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On Approximate Zeros and 
Rootfilding Algorithms for a Complex Polynomial 

By Myong-Hi Kim 

Abstract. In this paper we give criteria for a complex number to be an approximate 
zero of a polynomial f for Newton's method or for the kth-order Euler method. An 
approximate zero for the kth-order Euler method is an initial point from which the 
method converges with an order (k + 1) Also, we construct families of Newton (and 
Euler) type algorithms which are surely convergent. 

1. Introduction. Newton's method has long been used for solving a nonlinear 
equation f (z) = 0. The Newton method attempts to solve f (z) = 0 by an iteratively 
defined sequence zr+L = z- f(zn)/f'(Zn), for an initial point zo. It indeed 
converges to a root at a fast rate, if it starts with a good initial point. However, 
not much is known about the region of convergence or of fast convergence, and it 
is difficult to obtain a priori knowledge of convergence. 

In this paper we study the efficiency and the convergence properties of the 
Newton method and other generalized methods for solving a polynomial equation 
f (z) = 0. We have two main goals. First, we establish an estimate for a point 
zo, which predicts fast convergence of the algorithms starting at zo. Secondly, we 
develop a method which is guaranteed to converge, given an arbitrary initial point 
Zo . 

Following Shub and Smale, we consider the following generalized version of the 
Newton method, called the modified kth-order Euler method. 

We recall from elementary complex analysis that for a polynomial f and z E C 
such that f '(z) :$ 0, there is a well-defined local inverse branch f71 of f such that 

f (f(z)) = z. 

Definition 1.1. For an integer k and a complex number h, the Euler method 
iteratively defines a sequence Zn+1 = Ek,h,f(Zn) = Tkfn1 ((1 - h)f(zn)) for an 
initial point zo, where Tk is the kth-order truncation of f?71 considered as a power 
series about f(zn) 

For brevity we denote Ek,h,f by Ek if there is no confusion. Note that Elkf 
gives the Newton method. 

We define an approximate zero of f for Ek as follows. 
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Definition 1.2. zo is an approximate zero of f for Ek if 

If (zo) - 2 ) I 

/1 \(k+1)n 

(2) jzn - (I < C ( k) Izo- 

where c is a constant, g is a root and Zn+1 = Ek,l,f(zn) -( Z 5) 
Note the fast convergence of zn to (. This notion is due to Smale [12]. 
For a polynomial f and z e C, let 

af,z = max f (Z) f(i)(z) 1/(U-1) 
j>2 |f'(Z) ||j! f'(Z)| 

We show that z is an approximate zero of f for all Ek if afz ? 41 (see Theorem 
4.4). Recently, Smale [14] has obtained a similar result for k = 1 with a better 
estimate (a constant ao, in his notation, between 8 and 4) for a more general class 
of polynomial maps f: Cn __ Cn. 

The estimate for af,z plays an important role even when z.is not an approximate 
zero of f. It suggests the next iterate in the construction of algorithms which 
produces sure convergence. 

We construct two families of modified Euler methods Ak and Bk, which al- 
ways converge to a root or a critical point of f (see Theorems 5.A and 5.B). 0 is 
called a critical point of f if f'(0) = 0. As in the work of Shub and Smale ([9], 
[10]), the idea is to approximate the solution curve kt(zo) to the Newton vector 
field F(z) = -f(z)/f'(z) where qO5(zo) = zo. Note that f(qot(zo)) = e-tf(zo), a 
straight line through f(zo). Hence one can approximate a root by approximating 
fl-(e-tf(zo): t -- oo). To do so, Shub and Smale use the modified Euler method 
with a fixed step size h in Ek,h,f together with a probabilistic estimate on the set of 
initial points. In our algorithms we use a varying step size h at each point z, where 
h is given in terms of afz and hence related to the radius of convergence of fz 1. 
In particular, we show that for any polynomial f and initial point z0, Bk always 
produces a sequence zn converging to a root unless there is a critical value of f on 
the ray (0,f(zo)] (see Theorem 5.B). Recently, Shub and Smale [11] have shown 
that an algorithm similar to Al converges to a root for almost all polynomials and 
for almost all initial points zo. 

We have run some experiments on the algorithm Al and other similar algorithms 
with a starting point 0 and with a supplementary algorithm of Shub and Smale [10] 
for degenerate cases such as afz > 50d2. This corresponds to the case where z 
is near a critical point. Among (100 . d2) randomly selected polynomials of each 
degree d < 100 with complex coefficients la-I < 1, the average number of iterations 
to locate an approximate zero or to locate f such that If(')I < 10-4 is found to be 
less than 200. Our experimental result is independent of the degree d. 

2. Preliminaries. In this section we discuss some preliminary material needed 
in the later sections on the local behavior of analytic functions. 

The main tools used in Section 3 are from the theory of schlicht functions. f is 
called a schlicht function if f(0) = 0, f'(0) = 1 and it is univalent on D1 (0), the 
unit disk at 0. A univalent function is a one-to-one complex analytic function. 
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To each z E C and complex polynomial f such that f(z) :# 0 and f'(z) : 0, one 
associates a normalized polynomial a by means of 

U(w) = W + 52W2 + + add where a (f ) 
f ( 

Let Rfz be the radius of convergence of fz-1, considered as a power series at 

f (z). 
For f(z) $ 0, let Hfz = Rf,z/Ilf(z)l; see Figure 2.1. The following lemma is 

extracted from the work of Shub and Smale (see [9, p. 113]). 

LEMMA 2.1. Let a- be the inverse branch of a taking 0 to 0. Then 

(1) a-'(O) = 0, o-" (O) = 1. 

(2) Let x = f-1( (1 - h)f(z)) with IhI < Hfs Then 

fAX) = 1-acoe, where E = F and F(z) 
' f (z) 

f (z) FPz) 

(3) fz( 1 (( - h)f (z)) = z + F(z)a' (h). 
(4) Tkfz 1 ((1 - h)f(z)) = z + F(z)Tka-1 (h). 
(5) The radius of convergence of a-1 at 0 is Ra,o Hfz. 
(6) 1 a-1 (Hh) is schlicht, H Hf, . 

f 

f~~~~~~fz 

B-1'{ B(w) = z + F(z)w A-1 A(W) = f(Z) -W 

I(I f- z) 

0 

FIGURE 2.1. R = Rfz, H = Hf,z 

Proof. (1) is immediate. (2) is from Proposition 2 in [9]. For (3), (4) and (5), 
see [9, p. 114] and [10, p. 153]. (6) is a trivial consequence of (1) and (5). 0l 

Using Lemma 2.1, we may reformulate Definition 1.1 of Ek,h,f as follows. 
Definition 2.2. Ek,h,f (z) = z + F(z)Tka- 1(h). 
We will need the following properties. 

LEMMA 2.3 (De Branges' Theorem: Bieberbach conjecture). Let g(z) = z + 

92z2 + 93z3 + . . be schlicht. Then 1gkl < k. 

Proof See [2]. 0 
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LEMMA 2.4 (Shub and Smale). (1) Let g be schlicht. Then jg(h) - Tkg(h)l < 
(k + 1)rk+l/(1 - r)2, where r = Ihi < 1. 

(2) Let g be univalent on DH(O), 9(0) = 0 and g'(O) = 1. Then for h with 
r = Jhi/H < 1, 

Ig(h) - Tkg(h) I < H (k + 1)r k+1 

- (1 - r)2 

Proof From Lemma 2.3 we have 
00 rk1 (k+1. rk 

ig(h) -Tkg(h)i I < jr3 ? r i<~+ ) 

i A+ 1 ( 1-r ) 1r)2 j~k+l 

For the second statement, note that 1g(Hh) is schlicht, and then use (1). 0 

LEMMA 2.5 (Koebe Distortion Theorem). Let g be schlicht. Then for hi = 

r < 1, 

(1) ~~~~~~r r 
(1) t )z ~~~~< |g(h)j <(Ir, 

(2) 1- r 
< |g(h)l < 

+ r 
(+ r)3 - 1r)3' 

Proof. See [4, Vol. 2, pp. 351 and 353]. 0 
By resealing, we obtain immediately the following 

COROLLARY 2.6. Let g be univalent on DH(O) and g(O) = 0, g'(0) = 1. Let 
r = ihJIH < 1. Then 

(1) hi < Ig(h)l < ihi 

(2) r11 3 < I '(h) I < 1 + r 

Proof. Note that 1 g(Hh) is schlicht. Now use Lemma 2.5. 0 

COROLLARY 2.7. Let x = fz-'((1 -h)f(z))-=z + F(z)fr-1'(h) for Jhi < Hfz. 
Then we have 

(1) ft(z) f'(z) where= 
= 

) (1) f'(x)= f'(Z)or'(6) o- 1'(h)' F(z)' 

(2) 1 f,(Z)( IV - < WWIz~ < WWIz)| - , where r =|| 

Proof. Recall from Lemma 2.1(2) that f(x) = f(z)(1 - u(e)) and a(E) = h 
(f(z) - f(x))/f(z). Hence (1) is immediate by taking derivatives of f. (2) fol- 
lows from Corollary 2.6(2) since r-1(0) = 0, a-1 (0) = 1 and a-' is univalent in 

DH (0). 0 
We close this section with the following lemma. 

LEMMA 2.8. (1) Rfz = if(z) - f(O*)l > Minf(o)=0of(z) - f(O)l for some 
critical point 0* of f. 

(2) Let x = f-1( (1-h)f (z)) with ihl/Hfz < 1. Then Rf,, > Rf,z-if (z)-f (x)i. 
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(3) Let g = f - y be a translation of f by y E C. Then Ek,h',g(x) = Ek,h,f(X), 

where h' = hf(z)/g(z). 

Proof. For (1), see Lemma 3 in [12]. 
For (2), we note that by the uniqueness of analytic maps, we have fx 1 f= f 

on their common domain of definitions. In particular, fx'1 is analytically continued 
for all w such that Iw-f(z)I < Rf,,. Since Iw-f(z)I < Iw - f(x)I + If(x)-f(z)I < 

Rf,,, f;1 is analytic for all w such that Iw - f(x)I < Rf,z- If(z) - f(x)I. Hence 

Rf,x > Rf,z- If (z) -f (x) 1. 
For (3), note that g-' (w - y) is well defined where fj 1(w) is well defined and 

gz-1 (w - y) = f-1 (w). As power series at f(z) and g(z) respectively, we have 

f 1(f(z) - w) -gz-1(f(z) - w - y) - g-1(g(z) - w) 

where w = hf(z) = h'g(z) and h' = h(f(z)/g(z)). Hence we also have 

Tkfz7 ((1-h)f(z)) = Tkgz1((l-h')g(z)) and Ek,h',g(z) = Ek,h,fj(Z). 

3. Koebe Distortion Theorem and Euler Iteration. We recall that 
Ek,h,f(Z) = Tkfz-1((1 - h)f(z)). In this section we show that Ek,h, f approximates 
fz-1 with a suitable h, i.e., Ek,h,f (Z) = fz- (W) for w such that Iw - f(z)I < Rfz 
and Rfz is the radius of convergence of fz j. In particular, we show that Ek,h,f 

approximates fz' for all values on the disk of convergence as k T Xo. The main 
goal of this section is to prove Theorem 3.2 below. 

We recall that Hfz = Rf,z/lf(z)I, where Rfz denotes the radius of convergence 
of fz 1 at f(z). 

THEOREM 3.1. Let x f- 1f((1 - h)f(z)). Assume that 

- hj (1r)3 r = Hf, <1 and t < Ihl (l + r)3 

Then DtIFI(x) C fz-'(Dlf (z)18(f (x))), where 

s= Mintg (+r)3I Hfz(l-r)J and F= f(z) 

The proof will be given later. 0 
Let 

Bk(r) = (k + 1) ( r)5 rk 
(- r)5 

and rk be the smallest positive solution to Bk(r) = 1. Note that Bk (r) is increasing 
on [0, rk]. The condition that IhI < rkHfz is crucial for Ek,h,f to approximate fz1. 

THEOREM 3.2. Let z' = Ek,hf(Z) with r = hl/Hf,z < rk. Then we have 
z= fz1((1 - h')f(z)) and f(z')/f(z) = 1-h + e, where jej = Ih - h'I < 

Min{IhlBk(r), Hf,z(l - r)}. 

A table of approximate values of rk is given below. 

TABLE 3.1 

k 1 2 3 4 5 10 177 3303 47400 
rk .148 .225 .282 .329 .367 .495 .9 .99 .999 
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Remark. We note that rk f 1 as k t oo. In [9], Shub and Smale showed that 
Theorem 3.2 holds for all r < -Yk where -Yk T 0.175 as k t 00. 

Proof of Theorem 3.2. Recall that z' = Ek,h,f(z) = z + F(z)Tka-1(h), where 
F(z) = -f (z) /f'(z). Let f (z') = (1 - h') f (z). Let x = f;'((i - h) f (z)) - 

z + F(z)a-1(h). Then Iz' -x = IFI /.f-1(h) - Tkr-1(h)I. Since a-' is univalent 
on DH(O), we have by Lemma 2.4, 

t- I-'(h) - TkF(h)I < Hfz(k + 1)rk+l 
- r)3 (1r)3 

=ihBk(r) (1 + )3 < (hi for r < rk. k(r1+ r)3 - (1+ r)3 

Now, by Theorem 3.1, we have z' E fz (DIf(Z) 1(f(x))) and 

If(z') - f(x)l = 1(1 - h')f(z) - (1 - h)f(z)I = If(z)I Ih' - hi < If(z)Is. 
Hence, 

iEi = ih' - hi < s = Min{ihlBk(r), Hf,z(l -r)} 

and we have z' = fz 1 ((-h')f(z)) and f(z')/f(z) = 1 - h' for some h' with 

Ih'-hI < s. O 
We need the following lemmas to prove Theorem 3.1. 

LEMMA 3.3. (1) Let g be univalent on DR(Z). Then DRt(g(z)) C g(DR8(z)) C 

DRU(g(Z)), for any s < 1, t = S|g'(Z)1/(1 + S)2 and u = slg'(z)1/(1 -_ )2. 
(2) Suppose that g is univalent on DH(0), 9(0) = 0 and g'(0) = 1. Let z E DH(0), 

wherer = IzI/H. Then fors < 1-r we have DHt(g(z)) c g(DH8(Z)) C DHu(g(Z)), 
where t = ((1 - r)3/(1 + r)3) * s/(l - r + S)2 and u = ((1 + r)/(l-r)) *s/(1-r-S)2. 

0 

FIGURE 3.2. w = 9(z) 

Proof. (1) Let 

0 R(h) = (z) (g(z + Rh) - g(z)). 

Then it is easy to see that it is schlicht. Hence by Lemma 2.5, 6/(1+6)2 < I(h)I < 
6/(1 - 6)2 for Ihi = 6, so that we have 

DRIA(9(Z)) C g(DR(Z)) C DRW(q(Z)), 
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where R,u = 6Rjg'(z)I/(1 + 6)2, Rr = 6Rjg'(z)I/(1 - 6)2. By setting t = ,u, s = 6 
and u - f, (1) is established. 

For (2), note that g is univalent on DR(Z), where R = H(1 - r), and hence 

(1 - r)/(l + r)3 < Ig'(z)l < (1 + r)/(l - r)3 by Corollary 2.6. Let s = (1 - r)6. 
Then we have 

R? > 6H(1-r) 1-r _ Hs (1-r)3 =Ht 
(1 + 6)2 (1 + r)3 (1-r + S)2 (1 + r)3 

Rr 
6 

< 6H(1-r) 1+r < Hs 1 + r 
_ Hu 

(1 -6)2 (1 -r)3 - (1r- s)2 1- r 

where 
( - r)3 s l+r s 

t= (l-r)3~(1 ) and u= -r - 

Hence we have DHt(g(Z)) C g(DH8(Z)) C DHu(g(z)). n 
Lemma 3.3 gives the following Quarter Theorem at an arbitrary point z E DH (O) . 

COROLLARY 3.4. Let g be univalent on DH(O) and g(O) = 0 and g'(O) = 1. 
For z E DH(O), let r = IzI/H. Then DHt(g(z)) c g(DH(1_r)(z)), where t = 
1 ((1-r)2/(l + r)3). 

Proof. Use s = 1 - r in Lemma 3.3(2). El 

In Lemma 3.3(2) we will also need to estimate s as a function of t. 

COROLLARY 3.5. Suppose t < r((1-r)3/(l+r)3), where r = IzI/H < 1. Then 

DHt(g(z)) c g(DH8(z)), where s = Min{t((1 + r)3/(1 - r)3), 1 - r}. 

Proof. Since r(1 - r) < -, we have t < -((1 - r)2/(1 + r)3). Hence by Corollary 

3.4 we have DHt(g(Z)) C DH(1-r) (g(z)). Let t' = ((1-r)3/(1 + r)3) s/(-r + s)2. 

Since s < 1 - r, Lemma 3.3(2) shows that DHt' (g(z)) c g(DH,(z)). However, since 

s < t((1 - r)3/(1 + r)3) < r, we have 

(,1- r)3 8 
(1r)3_ 

( + r)3(1- r + s)3 - (1 + r)3 

Consequently, DHt(g(Z)) c DHt'(g(Z)) C g(DH8(z)), as claimed. El 

The proof of Theorem 3.1 now follows easily from Corollary 3.5. 

Proof of Theorem 3.1. Suppose that z = f71((1 -h')f (z)) where Iz' -x < IFit. 

Since 

z= fz ((1 - h')f(z)) = z + F(z)'- (h') 

= z + F(z)a' (h) + F(z)(&-1(h') - -1(h)) 

= x + F(z)(6-'(h') -a-(h)) 

we have 

z' -xl = JFJ la I'(h') - 6 '(h)I 

< IFit = IFIHt', where t' = < hi (1 - r)3 = r(l ( r)3 H - H (1 +r)3 -(1 +r)3 

by the hypothesis. Hence, by Corollary 3.5, we have ih' - hl < Hs', where s' = 

Min{t'((l + r)3/(1 - r)3), 1 - r}. Now by setting s = Hs' we have the claim. [1 
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4. Domain of Injectivity and a Notion of an Approximate Zero. The 
main goal of this section is to give a criterion to determine an approximate zero of 
a polynomial f for the modified Euler method. Hereafter we will denote Ek,h,f by 
Ek if there is no confusion. 

Definition. zo is an approximate zero of f for Ek if 

(1) 
~~~~~~If(Zn)I I 

(k+l)7- 

I f (Zo) I 2) 
/ \( k+l1) n 

(2) IZn - ', < c (2 ) Izo -1, 

where Zn = En,1 ,f(Zo) - ( and c is a constant. 
We will need the following estimate of the domain of infectivity, which itself is 

quite interesting. 

THEOREM 4.1. Let g(z) = z + a2z2 + be a power series and V/ be the 
compositional inverse of g taking 0 to 0. Let a = supi Jail1/('-1). Then V/ is well 
defined, analytic and one-to-one on DR(O), where (3 - V4)/a < R. 

Proof. Suppose that jg(z) - zI < r on Izi = r. Then 0 is the only root of g 
in Dr(O) by Rouche's Theorem. It follows that (see [1, Theorem 11, p. 131]) the 
inverse map V/ is well defined on g(Dr (0)). In particular, 0 is well defined on DR (0), 
where R = Minll=r Ig(z)j. Now, 

Ig(z)I = Iz 11 + a2z + a3z2 
> r~l - ((ar) + (ar)2 + (ar)3 + 

>r( - )r on IzI= r. 

But r(1 - ar/(1 - ar)) achieves the maximum (3 - 4/-)/a when r = (2 -)/2a. 
Also note that 

Ig(z) - z la2z2 + a3z3 + .1 = IzI ja2z + a3z + 

< r ar < r, on lzl = 2 a/ 
_1 - ar I2 

Hence / is well defined and invective on DR(0), where R = (3- V4-)/a 1/5.83a > 

1/6a. 0 
Remark 4.2. The corresponding upper bound R < 4/a is obtained in [12, p. 9, 

Extended Loewner's Theorem]. For a polynomial f and z E C we define 

afz max f(z) f(j)(z) / 
j?2 f'(z) jTf(z 

We apply Theorem 4.1 to a polynomial. 

COROLLARY 4.3. Let f be a polynomial of degree d and z be a complex number 
such that f'(z) $ 0, and f(z) $ 0. Let fz-1 be the inverse branch of f such that 

fz-1(f(z)) = z. Then fz-1, as a power series at f(z) has a radius of convergence 
Rfiz satisfying (3 - /)/a < Rfz/If (z) I < 4/a. 
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Proof. Let a be the polynomial associated with f as in Lemma 2.1. Since the 
radius of convergence of a-1 at 0 is Hf, = Rfz/If (z)I by Lemma 2.1, we have the 
claim by the previous theorem. O 

We now come to one of the main results. 

THEOREM 4.4. If af,zo < 1/48, then zo is an approximate zero of f for Ek for 
all k. In other words, we have 

( 1 ) |If(zo) I 2 

/1 \(k+l)n 
(2) Zn - i < 4 

(2 ) Izo - 

where 4 is a root and Zn+1 = Eklf (zn) -+ 

Proof. We will proceed with the proof by an induction on n. For simplicity, we de- 
note Rn = Rf zIn fA = f(Zn), fny = f'(Zn), Hn = Rn/IfnI and Fn =-f(zn)/f'(zn) 

Claim 1. IfIl/Ifol < (2)k+1X for all k. 
We note that af,zo < 1/48 implies by Corollary 4.3 that 

- =R < < 1 < 0.122 < rk 
Ho0 R 48 3- ~/8 8.23 

for all k (see Table 3.1). Hence we apply Theorem 3.2 with h = 1, and we have 

an fiI (1 (1 k?1 zj = f -1 (f (zi)) an f^< Bk (H)<(2 ,0 and 
Ifol \Ho/ - 

by noting that 

Bk (1 < Bk (0.122) = (k + 1) (1 + 0 122)3 (0.122)k for k> 2. 

For k = 1, we recall from Lemma 2.1 that f(zl)/f(zo) = 1 - a o ?, where e = 

(z1 - zo)/Fo = 1. Since 

11-u(1)I = 12 +3 +... +UdI < a <1 (V 

we have that If 1 /Ifol < (!)k+1 for all k as claimed. It is useful for the next claim 
to note that IfIl/Ifol < 1/8. 

Claim 2. Suppose Ifn,/Ifol < (1)(k+l)n. Then Ifn+jI/IfoI < (1)(k+?)n+l. First 
note that Rn > Ro - I Ifni - Ifol I by Lemma 2.8(2). Since Ro/jfol > 8.23 and 

IfnI/IfoI < 1/8 for all n and k, we have Rn > 8.231fol - 9Ifol > 7IfoI for all n and 
k. Hence we have 

Ifnl Ifol Ifnl lfnl ( 1 ) (k+1)n <r 1 (1(k+1)n 
=~~~~~ =__ < _ < _ rk_ Hn Rn Rn Vo-7Ifol 

- 
7 2 2 

for all k and n. Now, applying Theorem 3.2 with h = 1, we have Ifn+1I/IfnI < 

Bk(l/Hn). Since 

Bk(r) = (k +l1) (l + r)<r () <k r-k Bk~) ( +1)(1 - r)5 <Bk (rk) rk <(7) 
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for r < rk we have 

If+ I < Bk =n ) k(k+1)n 

Hence we have 

|fJ fn+1 I Ifn+1 JAI k(k+l)nr 1 (k+l)n r1 (k+l)n+l 

Ifol A Jl Ifol 2 2 2 
as claimed. 

Claim 3. Izn- I < 4(i)(k+)n Izo- I 
First note that zn defined here has Hn > 8 > 1/rk (see the proof of Claim 

2). Hence a-1 is well defined at all zn, and we have ( = zn + F(zn)or-(1) and 

zn- = F(Zn)o'-(1), where a is the polynomial associated with f and zn. 
By Corollary 2.6(1) we note that 

I F(zn) I 
T< J~ j< 

IF(Zn) I 

(1 ~ l+-4 _/H (1-1/n 
Hence we have 

< IF(Zn)l < IF(Zn)l (1 + 1/HO)2 

I -(1 - l/Hn)2 - (1 - l/Hn)2 IF(zo)I Izo 
_ IfnII fol (1 + 1/Ho)2 
-ISol J fn I (1 - /Hn)2 ?Z 

1 

We note that (1 + 1/Ho)2/(1 - 1/Hn)2 < 1.5, since 1/Ho < 0.122 and l/Hn < 1/28 
(see the proof of Claim 2). Further, we claim that IfoM/Ifnl < (1 + 1/7)3/(1 - 

1/7) < 1.8, so that we have Izn - 4I < 4(?)(k+l) Izo -1. To see this, note 
that zn = f-' ((1 - h)f(zo)) for IhI = If(zn) - f(zo)I/IfoI < 9/8 and Ihi/Ho < 

(9/8)/8.23 = 1/7. Now apply Corollary 2.7(2) with r = 1/7; we have IfoM/IfnI < 
(1 + r)/(1 - r)3 < 1.8. Hence we have completed Claim 3. 0 

5. Algorithms. The main goal of this section is to construct new algorithms 
to find a root of a polynomial. Applied to any polynomial f, these new algorithms 

always converge to a root or a critical point of f. The underlying idea is that, for 

an initial point zo, one analytically continues f?,' toward 0 in a radial direction as 

long as it is possible. The idea used to determine the approximate zero in Section 
3 is also useful. 

As mentioned in Section 1, the radius of convergence (or equivalently, afz) plays 
an important role as a successive overrelaxation parameter in our algorithms. 

Recall that 

af,z = max 
fz ~)z ' 

j>2 (z) j!f'(z) 
from Section 4. 

Now we describe the algorithms. 
ALGORITHM Ak. For a polynomial f and a complex number zo E C, define 

iteratively, 

Zn+1 = Ek,hnf (zn), where hn = Min 1 
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For example, if k = 1 we have Zn+1 = Zn - hn(f(Zn)/f'(Zn)) l1 

ALGORITHM Bk. For a polynomial f and zo E C, let wo = f(zo). Define 
iteratively 

Zn+1 = Ek,l,gn(Zn), 

where gn = f - wn+l, wn+L = (1 - hn)wn, and hn = Min(1, 1/1800af,ln). 
Remark. Note that 

Zn+ 1 = Ek,1,gn (Zn) = Ek,h,ff (Zn) 

where h = (f(zn) - wn+l)/f(zn) by Lemma 2.8(3). For example, if k = 1 we have 

Zn+1 = Zn - (f (zn) - n+l)/f'(zn). 

THEOREM 5. A. Zn in Algorithm Ak always converges to a root or a critical 
point of f. 

Proof. Note that once af,'n < 1/48 (i.e., hn = 1) then Zn is an approximate zero 
of f and converges to a root of f by Theorem 4.4. We may assume that afzn > 1/48 
and hence hn 1/48afzn < gHf In by Corollary 4.3. Applying Theorem 3.2 with 

hn we obtain If(zn+1)I/If(zn)I < 1 - h', where Ih' - hnI < Bk(g)hn < 3hn for 

all k. Inductively one has f (ZN) If (zo) = HIN (1 - h' ), where I hn - hn I < 3 hn 

Notice that If(zn)I/If(zo)I converges always since it is decreasing. We will show 

that Zn converges to a critical point of f , if If(Zn)I/If(ZO)I converges to a nonzero 
number. Recall from the theory of infinite products that this implies that E bn is 
bounded, where 1 -bn = 1 -h' 1. Note that E hn and Z IhnI are also bounded 
since bn ? hn- Ihn- hnI ? 1hn > IhlI by (1). Again by the theory of infinite 
products we have Hl(1 - h) w, a nonzero complex number. This w is a critical 
value of f since hn -+ 0 and If'(Zn)I -+ 0 by the definitions of hn and afIn. Further, 
we claim that IZn+1 - Zn 0 and Zn converges to a critical point 0. To see this, 
just note that 

af,z = max | (Z) fu)(d) ) | f'(z) d|f(d)(Z) 11(d- 
j=2,...,d f' (Z) J!f'(Z)fI z dfI(z 

f (Z) 1 1/(d-1) 

- f'(Z) f'(Z) 
Hence 

If(Zn)I < ?IIZ)11(d-1) _+ o. 
IZn+1 - ZnI = hn <lI 1 - If'(Z4 ) 

Since there are finite preimages of w, we conclude that Zn -* 0 where w = f(0). [1 

THEOREM 5.B. For any polynomial f and zo E C, Zn in Algorithm Bk con- 
verges to a root or a critical point of f. Further, Zn converges to a root unless there 

is a critical value of f on the ray (0, f(zo)]. 

Proof. It is easy to see that once hn = 1 (i.e., afIn ? 1/1800 < 1/48) then Zn is 
an approximate zero of f and hence Zn converges to a root of f by Theorem 4.4. 
Note that if Hn > 7200 then hn = 1, and Zn is an approximate zero by Corollary 
4.3. We will show inductively that either Zn is an approximate zero or Zn satisfies 
the bound 
(1) ( n ) 1 + n, <n4H0 1 

f (Zn.) +f ~~ 14400 -2 
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For simplicity, we denote fn = f(zn), R = Rf Hn = Rn/ifn I We claim that 
(1) completes the proof: Recall that Rn = If - f(0*)I for some critical point 0* 
by Lemma 2.8(1) and that Hfzn/7200 < hn < Hfzn/308 for hn < 1 by Corollary 
4.3. Now in the case hn < 1, 

Wn - f (*)I Ifni IWn - Al + fn - f (f ) < -1- (I nI+ Hn) 
IWnf()I Wn_ IN f|1 6n1 

< 2 HnO + Hn since |6nI < 2 
~14400 

< 2.5 Hn < 20O00hn 

Using the same argument as in Theorem 5.A, wn = Hlnm (1 - hm) converges to 
a nonzero number only if hn -+ 0 and hence only if Iwn - f(0*) I 0. Since there 

is no critical value on (0, wo], this is possible only if wn -+ f(9*) = 0. Again 
using the same argument as in Theorem 5.A, we conclude that Zn -0* where 
f(0*) = 0. Now we start an induction to show (1). Suppose fn/wn = 1 + En, 

k?nI < Hn/14400 < 1/2. Then we will show that either Zn+1 is an approximate 
zero or it satisfies fn+1/wn+l = 1 + 6n+li i6n+?1 < Hn+i/14400 < 1/2. Recall 
that Zn+1 = Ek,h,f (Zn), where h = (fn - wn+?)/fn and Wn+ = (1 -hn)wn. Note 

that 

h = Ifn -fWn+- = Ifn-(1-hn)wn = Ifn -(1-hn)(1 +En)fnl 

IfN IfA I INI 
= 11- (1-hn)(1 + E) = Ihn - n(l -hn)I < hn + ?InI 

< Hn + Hn < Hn 

- 308 14400 - 300 

Applying Theorem 3.2 to Zn with h, we have 

fnf1 =1-h+h6 where 161 < Bk ( ) < 1 for all k, 

fn+l =1 + 
h 

since Wn+1=(1-h)fn 
Wn+1 1-h 

and 
Wn+1 

+ En1 
1 h8 

_f 
= 
1 +E+ 1 + p u 1 - h' 

Note that 

= 
Rn+l > fn Rn-Ifn-fn+1I by Lemma 2.8(2) 
fn+l1| fn+ 1 1 In 

jl-h ~ n- Ih- 6j 
- 1 1-h + HI 

> 1 Hl (H-3 Hn1 + 14) 

296 Hn 

297 11-h+h6l' 

Now 

l i h6 < 
____ 

1 
1 h +h Hn 297 1 1 
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Note that if I I> ? then 

Hn+1 > 1+lI 43000 > 7200 

and hence ZnrL is an approximate zero. If Zn+1 is not an approximate zero then 

Hn+l < 7200 and JIL < 1. Hence we have 

cn+l I < 21,l < 2 . 
5 

.Hn+1 < Hn+1 < Hn+1 < 
1 

4 43000 - 30000 - 14400U 2 
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